

MCX BASIC

For the TRS-80 Micr o Color Computer MC-10

Darren Atkinson
January 25, 2011

Page 1

OVERVIEW

MCX Basic is an extension of the MC-10’s MicroColor Basic language. It is provided in a 16K
EPROM which must be installed in the MCX128 expansion module. This document describes
only those changes and additions provided by MCX Basic. It is assumed that the reader is
already familiar with MicroColor Basic.

The two primary goals for developing MCX Basic were to provide an easier way to get programs
and data in and out of the computer and to give the MC-10 an additional level of compatibility
with its big brother; the TRS-80 Color Computer (CoCo).

The first goal has been achieved by the addition of LOAD and SAVE commands that can
interact with a file server via the built-in serial port. This greatly improves the speed, ease and
reliability of file storage.

The second goal required several additions to the language, bringing the MC-10’s dialect closer
to that of the CoCo’s Extended Color Basic. All statements and functions found in ECB have
been implemented with the exception of the following:

AUDIO DEFFN DLOAD GET
JOYSTK MOTOR PCLEAR PUT
PRINT USING

Several features not found in ECB have also been added, including:

AUTO CHAIN ERRL ERRN
MERGE MAXVAL MINVAL ON BREAK
ON ERROR RUNM STRMEM SWAP
WAIT

INSTALLATION and STARTUP

Install the MCX Basic EPROM in the ROM socket (U4) of the MCX128 expansion board.
Connect the MCX128 to the back of the MC-10 and turn on the computer. At startup, a Boot
Menu is presented which allows you to choose the variation of Basic you wish to use. In
addition to stock MicroColor Basic, two options for MCX Basic are available (see Standard vs.
Large below).

After pressing a key to select the desired option, the screen will go dark momentarily while the
system performs a memory test and copies the selected ROM contents into RAM.

NOTE

:

To return to the Boot Menu without switching the computer on and off,
hold down the BREAK key while pressing and releasing the Reset button.

Page 2

STANDARD vs. LARGE

At startup, the Boot Menu gives you the choice of Standard or Large configurations for
initializing MCX Basic.

* The Standard configuration provides roughly 28K of RAM for
programs and variables along with five pages for graphics.

* The Large configuration provides roughly 46K of RAM for
programs and variables along with eight pages for graphics.

The Large configuration should not be used when you intend to load and run machine language
programs that are unaware of the MCX128 hardware. This is because the Large configuration
works by placing programs and variables in a bank of RAM separate from that used by the video
display. In this environment, programs that need to access the display must know how to select
the proper RAM bank.

Basic programs that use PEEK and POKE to access video RAM must also be modified in order
to work correctly under the Large configuration. PEEKing or POKEing addresses between
16384 and 48895 will normally access the bank containing the Basic program workspace. To
instead access the bank containing the video display and graphics pages, you must suffix the
PEEK or POKE keywords with ’@’. For example:

10 REM BLANK THE SCREEN
20 FOR A=16384 TO 16895
30 POKE@A,128
40 NEXT

When

PEEK@

 or

POKE@

 is used, the location that is accessed will always be within page 1 of the
address space as defined by the MCX128 hardware ($4000 - $BFFF). The computer calculates
the actual address using the formula:

address = $4000 + (argument AND $3FFF)

NOTE:

The graphics pages (but not the screen) are located in different
areas of memory depending on which configuration is selected.

DETECTING MCX BASIC

A program that wants to know whether or not MCX Basic is present can examine memory
locations $FFDA..DB. MCX Basic places the ASCII characters ’EX’ in these locations.

Page 3

BASIC'S SYSTEM VARIABLES

MicroColor Basic positioned its system variables in two separate regions of memory. The direct
page locations 128 - 255 ($0080 - $00FF) were used for those variables which are frequently
accessed or would benefit from the use of Direct Page addressing. The remaining system
variables were positioned at addresses 16896 to 17221 ($4200 - $4345) which immediately
follows the 512 bytes of RAM used for the Text / Semigraphics screen.

MCX Basic keeps all of the direct page variables in exactly the same locations, but moves the
others so that they no longer conflict with the area needed to display a graphics screen. The new
address for one of these variables is calculated by subtracting 16640 ($4100) from the original
address. They now reside immediately following the direct page, starting at 256 ($0100).

GRAPHICS MODES

Three of the 6847’s graphics modes are now available from Basic. Unfortunately, Tandy’s
decision to limit the internal RAM to 4K means that modes RG6 and CG6 (aka PMODEs 3 and
4) can’t be displayed without wrap-around. For this reason, MCX Basic supports only RG2,
CG3 and RG3 (aka PMODEs 0, 1 and 2).

Although the maximum horizontal resolution in these modes is 128 pixels, MCX Basic has
adopted the Extended Color Basic convention that all modes are addressed using horizontal
coordinate values from 0 to 255 and vertical coordinate values from 0 to 191. These values are
then scaled to fit the actual 128 x 96 or 128 x 192 screen size for the current mode.

The system allocates either 5 or 8

pages

 of memory for graphics use depending on which
configuration was selected from the Boot Menu. The graphics pages are always available in
MCX Basic. There is no PCLEAR statement to control the allocation of graphics pages. Each
page is 3K in size (as opposed to the 1.5K pages used in Extended Color Basic) and can
accommodate a full graphics screen for any of the supported modes.

NOTE:

The graphics pages are located in different areas of memory
depending on which configuration was selected from the Boot Menu.

KEYBOARD SHORTCUTS

The keyboard shortcuts which produce the

CSAVE

 (Ctrl-3) and

CLOAD

 (Ctrl-4) keywords under
MicroColor Basic have been changed to produce

SAVE

 and

LOAD

 (without the C).

MCX Basic will also interpret the combination of

SHIFT-BREAK

 to be the equivalent of
pressing the

CLEAR

 key on a CoCo (character code 12).

Page 4

MAXIMUM LINE LENGTH

The maximum line length allowed during program entry or in response to an INPUT statement
has been increased to 249 characters. This matches the line length permitted on the CoCo.

HEX and OCTAL CONSTANTS

MCX Basic adds the ability to use hexadecimal constants prefixed with &H and octal constants
prefixed with &O.

POKE &HBFFF, &H4C
K = &O777

COMPUTED LINE NUMBERS

MCX Basic allows you to use variables and/or expressions for line number references. To utilize
this feature you must place the expression inside of parenthesis. For example:

GOTO (N)
GOSUB (100+(J*50))

If you use computed line numbers in your program then you should be wary of using the
RENUM command. RENUM does not modify GOTO and GOSUB statements which use the
computed line number capability.

RESTORE TO LINE

In MCX Basic, the

RESTORE

 statement will accept an optional line number argument. This
causes the system to start searching for

DATA

 statements at the specified line number when the
next

READ

 statement is executed.

RESTORE 500
RESTORE (1000+K*100)

INKEY$ CORRECTION

The

INKEY$

 function in MicroColor Basic would sometimes return the character for the
BREAK key (03) rather than allow the BREAK key to stop execution of the program. This
problem has been corrected in MCX Basic.

VARPTR CORRECTION

The

VARPTR

 function in MicroColor Basic was returning a signed integer result. This caused a
negative value to be returned for variables located at addresses above $7FFF. MCX Basic fixes
this problem by always interpreting the result as an unsigned integer.

Page 5

COMMANDS

AUTO

start

,

interval

Begins program entry with automatic line numbering. The first line number to use is indicated by

start

. Each subsequent line number is produced by adding

interval

. Both arguments are optional
and default to 10 if omitted. To exit the auto line numbering mode press the BREAK key (or
press ENTER without typing any additional characters on the line).

CSAVEM "

filename

",

start

,

end

,

transfer

Saves a block of memory to cassette. The

start

 and

end

 arguments specify the inclusive address
range of the memory block to save. The

transfer

 argument is optional and specifies the default
address to use for the EXEC command when the file is later loaded using CLOADM. If

transfer

is omitted then

start

 will be used instead.

DEL

start

-

end

Deletes one or more program lines. The program line(s) to be deleted are specified as a range of
line numbers in the same format accepted by LIST.

Examples:

 DEL 50

delete line 50

 DEL -30

delete all lines before and including line 30

 DEL 100-200

delete all lines from 100 to 200 inclusive

 DEL 500-

delete line 500 and all following lines

DIR "

directory name

"

List the names of files contained in a directory on the server. If the

directory name

 is omitted
then files from the default directory are listed (see the SETDIR command on page 7).

DIRLIST

List the names of directories available from the server.

Page 6

EDIT

line

Enters Edit mode for the specified

line

 number. You may also type just the letter ’

E

’ followed by
a line number to invoke the editor. The following key commands are available in Edit mode:

A

Abort any changes made to the line and start over.

n

B

Move cursor back

n

 characters.

n

C

Change

n

 number of characters. (type the new characters after C)

n

D

Delete

n

 number of characters.

I

Begin

Insert

 mode.

H

Delete remainder of the line and begin

Insert

 mode. (HACK)

n

K

c

Delete characters up to the

n

th occurrence of character

c

. (KILL)

L

List the line (including changes made so far) and continue editing.

n

N

Move cursor ahead

n

 characters. The spacebar may also be used for this.

n

S

c

Move ahead to the

n

th occurrence of character

c

. (SEARCH)

X

Move to the end of the line and begin

Insert

 mode. (EXTEND)

Cntrl

-Z

Exit from

Insert

 mode.
BREAK Cancel the edit operation without saving changes.

NOTE

:

The Editor is automatically invoked when a Syntax Error occurs in a program line.

LOAD "

filename

"

Load a new BASIC program into memory from a file on the server. Refer to the server
documentation for specific details on it’s features and capabilities.

LOADM "

filename

",

offset

Load a machine language file from the server. The

offset

 argument is optional and, if provided,
will be added to the load and execution addresses specified within in the file. Refer to the server
documentation for more details on it’s features and capabilities.

MERGE "

filename

"

Load a BASIC program from a file on the server and merge it with the program currently in
memory. Program lines from the file will replace lines in memory that have the same line
number.

NOTE

:

MERGE can be quite slow when working with large programs.

RUN "

filename

",

line

Loads a new BASIC program into memory from a file on the server and begins execution. The
optional

line

 argument may be provided to start execution from somewhere other than the
beginning of the program.

Page 7

RUNM "

filename

",

offset

Loads a machine language file from the server and begins execution. The optional

offset

argument will be added to the load and execution addresses specified within the file.

SETDIR "

directory name

"

Set the default server directory to the one identified by

directory name

. Refer to the server
documentation for more details on it’s features and capabilities.

RENUM

new

,

start

,

interval

Renumbers program lines and updates all literal line number references in statements such as
GOTO, GOSUB, etc.

Renumbering starts with the first program line whose current line number is greater than or equal
to

start

. If

start

 is omitted then all of the program’s lines will be renumbered.

The first new line number to be assigned is specified by

new

. If

new

 is omitted then 10 will be
used. Subsequent line numbers are assigned by adding the value of

interval

. If

interval

 is
omitted then a default interval of 10 is used.

WARNING

!:

The RENUM command cannot update computed line number references

.

Examples:

 RENUM

Renumber all lines. Use 10 for the first new number and interval.

 RENUM 1,,1

Renumber all lines. Use 1 for the first new number and interval.

 RENUM 500,100,5

Renumbers lines 100 and beyond to 500, 505, 510...

SAVE "

filename

"

Save the BASIC program currently in memory to a file on the server. Refer to the server
documentation for specific details on it’s features and capabilities.

SAVEM "

filename

",

start

,

end

,

transfer

Save a block of memory to a file on the server. The

start

 and

end

 arguments specify the
inclusive address range of the memory block to save. The

transfer

 argument is optional and
specifies the default execution address to use when the file is later loaded using RUNM or
LOADM / EXEC. If

transfer

 is omitted then

start

 will be used instead.

TROFF

Turns off program Tracing.

TRON

Turns on program Tracing. Running a BASIC program while tracing is on will cause each line
number to be printed to the screen as it is executed.

Page 8

STATEMENTS

’

The apostrophe character can be used as shorthand for

REM

.

CHAIN "

filename

",

line

Load and execute a BASIC program from a file on the server without erasing any variables that
are currently in memory. The optional

line

 argument may be provided to start execution from
somewhere other than the beginning of the program.

NOTE

:

CHAIN can produce an ?OS ERROR if the current program has
created many string variables using literal assignments.

CIRCLE (

cX

,

cY

),

radius

,

color

,

scaleY

,

start

,

end

Draws a circle, ellipse or arc on the current graphics page. The (

cX

,

cY

) and

radius

 arguments
are required to specify the center point and radius.

The optional

color

 argument, if provided, must be a color value (0 to 8). If

color

 is omitted then
the current foreground color is used instead (see

COLOR

 on page 9).

The

scaleY

 argument is optional and can be used to draw an ellipse instead of a circle. The
argument’s value is a scaling factor that is applied to the radius for the height only. A value of 0.5
will draw an ellipse whose height is half its width. A value of 2 will draw an ellipse whose
height is twice its width.

The

start

 and

end

 arguments are optional and specify the angles for the starting and ending
points of an arc. The value for these arguments may range from 0 to 1, where 0 is at 3 o’clock,
0.25 is at 6 o’clock, 0.5 is at 9 o’clock and 0.75 is at 12 o’clock. The arc is always drawn
clockwise from

start

 to

end

.

CLEAR ERROR

This statement can be used to reset the values returned by the ERRN and ERRL functions to -1
and 65535 respectively. These are the same values which those functions return when no error
has occurred since the program was RUN.

CLOSE

fileNumber

Closes the specific data file indicated by

fileNumber

. If

fileNumber

 is omitted then all open data
files are closed.

NOTE

:

Entering a RUN command or executing an END or FILES
statement will also close all data files.

Page 9

COLOR

foreground

,

background

The COLOR statement sets the current

foreground

 and/or

background

 colors to use in the
current graphics mode. Either value may be omitted if only one of the colors is to be changed.

NOTE

:

Changing the graphics mode with PMODE will reset the foreground and
background colors to the system’s default settings for that mode.

DEFUSR =

address

Defines the entry address for the machine language USR function.

DRAW

string

Draws one or more lines on the current graphics page as instructed by the contents of the

string

argument. Commands within the string may include:

PEN MOTION:

M

x,y

Move to absolute position

x,y

 or move relative distance +/-

x

 and +/-

y.

U

n

Move Up

n

 positions.
D

n

Move Down

n

 positions.

L

n

Move Left

n

 positions.

R

n

Move Right

n

 positions.
E

n

Move North East

n

 positions.
F

n

Move South East

n

 positions.

G

n

Move South West

n

 positions.

H

n

Move North West

n

 positions.

SETTINGS:

A

n

Set Angle of rotation to

n

*90 degrees (clockwise).
C

n

Set foreground Color to

n

 (0-8).
S

n

Set the Scale factor to

n

/4 (1-62).

OPTIONS:

B

Use as a motion command prefix to move without drawing.

N

Use as a motion command prefix to draw without updating the current position.

X

s$

;

Execute commands in string variable

s$

ELSE

MCX Basic adds the ability to include an ELSE clause in an IF statement. A line number
immediately following ELSE is an implied GOTO (just like THEN).

Examples:

 IF I >= 25 THEN PRINT I ELSE PRINT I*2
 IF SGN(X)= -1 THEN 100 ELSE 200

NOTE:

Computed line number expressions cannot be used
as implied GOTOs following THEN or ELSE.

Page 10

ERROR

number

Simulate an error of the type specified by the error

number

. See ÒERROR CODESÓ on page 19
for a list of error numbers.

FILES

count

Changes the number of File Control Blocks allocated to the quantity specified by

count

. The
system allocates two FCBs when the computer is turned on. You can allocate a minimum of 0
and a maximum of 15 FCBs. Each FCB that is allocated reduces the amount of RAM available
for your programs and data by 260 bytes.

NOTE:

Executing a FILES statement will close any files that are currently open.

INPUT #

fileNumber

,

var1

,

var2

, ...

Reads one or more items from the specified data file into the variables listed. The file must have
previously been opened for Input using the OPEN statement (see page 12). The EOF function
(see page 16) can be used to determine whether or not the end-of-file has been reached.

LINE (

x1

,

y1

)-(

x2

,

y2

),

color

, BF

Draw a line or box on the current graphics page.

The optional (

x1

,

y1

) point specifies either the starting point of the line or one corner of the box.
If (

x1

,

y1

) is omitted then the end point of the previously drawn line (or 128,96) is used.

The -(

x2

,

y2

) point is required and specifies either the end point of the line or the opposite corner
of the box.

The color argument is required and may be a color value (0-8), or one of the keywords

PSET

 or

PRESET

. Using

PSET

 or

PRESET

 requests the current foreground or background colors
respectively.

To draw a box (rectangle) instead of a line, include the

B

 or

BF

 option following the

color

argument. The

B

 option will draw the outline of a box as defined by the two points. The

BF

option will draw the box and fill its interior.

The following statements draw the three sides of a triangle:

 LINE (50,140)-(128,20),PSET
 LINE -(206,140),PSET
 LINE -(50,140),PSET

Page 11

LINE INPUT "

prompt

";

stringVar

LINE INPUT #

fileNumber

,

stringVar

The

LINE

INPUT

 statement is similar to

INPUT

, but has the following differences:

* A question mark (?) is not displayed when requesting input from the keyboard.
* The input data can only be assigned to one string variable.
* Commas, colons, quotation marks and leading spaces are all considered part of the string.

The

prompt

 and

fileNumber

 are both optional.

LINE INPUT A$

.

LINE INPUT "READY> ";C$
LINE INPUT #1,FL$

LOAD*

array

, "

filename

"

Load data for the designated numeric

array

 from a file on the server. An ?OM ERROR will
occur if the file contains more data than can fit in the array.

LOAD SCREEN "

filename

",

page

Load a file containing a graphics screen image from the server into the specified

page

 of
graphics RAM. A

page

 argument of 0 will load the image into whichever page is currently being
displayed. Page numbers from 0 to 5 may used when running MCX Basic in the Standard
configuration. The Large configuration supports page numbers from 0 to 8.

MID$(

oldString

,

position

,

length

) =

newString

The MID$ assignment statement allows you to replace a portion of one string with the contents
of another.

OldString

 is the name of the string variable to be modified.

Position

 specifies the
position of the first character in

oldString

 to be replaced.

The

length

 argument is optional and specifies the number of characters to replace. If

length

 is
omitted then the computer uses either the length of

newString

 or the number of positions
remaining in

oldString

, whichever is smaller.

NOTES

:
If

length

 is larger than the length of

newString

 then all of

newString

 is used.

The length of

oldString

 never changes. The number of replacement
characters is clipped to the number of positions remaining in

oldString

.

Page 12

OPEN

mode

,

fileNumber

,

fileName

Opens a data file using the specified

mode

 and assigns the

fileNumber

 used to access the file.
The

fileNumber

 must be within the range of 1 and the number File Control Blocks that have been
allocated. The system allocates two FCBs when the computer is turned on. You can allocate up
to 15 FCBs using the FILES statement (see page 10).

The

mode

 argument is a string value in which the first character must be one of:

I

Input

O

Output (erases current contents)

A

Append

Once a file has been opened, you can read from or write to the file using the INPUT# or PRINT#
statements respectively. With a file that has been opened for Input, you can use the EOF
function to test for an End-Of-File condition.

Example:

OPEN "I", 1, "MYDATA"

Opens file "MYDATA" for input as #1.

ON BREAK

...

The ON BREAK statement permits trapping of the BREAK key so that your program can
respond in some way other than stopping. There are three variations of ON BREAK:

 ON BREAK CONT

Continue without stopping (disable BREAK).

 ON BREAK GOTO

line

Go to the specified line whenever BREAK is pressed.

 ON BREAK STOP

Restore normal operation (stop when BREAK is pressed).

ON ERROR

...

The ON ERROR statement permits the trapping of errors so that your program can respond in
some way other than stopping. There are three variations of ON ERROR:

 ON ERROR CONT

Continue with the next statement instead of stopping.

 ON ERROR GOTO

line

Go to the specified line whenever an error occurs.

 ON ERROR STOP

Restore normal operation (stop and report the error).

The

ERROR

 statement (see page 10) can be used to simulate an error condition. The

ERRN

 and

ERRL

 functions (see page 16) can be used to determine the type of error and the line number in
which it occurred.

Page 13

PAINT (

x

,

y

),

fill

,

border

Fills a region in the current graphics page with "paint" of the specified

fill

 color. Painting starts
at the point indicated by (

x,y

) and will flood the surrounding area until it encounters pixels of the

border

 color. If

fill

 is omitted then the current foreground color is used. If

border

 is omitted then
painting will only stop at pixels which are already the fill color.

WARNING:

PAINT can require a substantial amount of stack space for complex images.
When using MCX Basic in the Large configuration, the Paint stack is permitted to
invade graphics pages numbered higher than the current page, possibly
destroying any images in those pages.

PCLS

color

Clears the current graphics page by setting all pixels to the specified

color

. If

color

 is omitted
then the current background color is used.

PCOPY

page

 TO

page

Copies the contents of one graphics page to another. A page number of 0 refers to the current
display screen. Page numbers from 0 to 5 may used when running MCX Basic in the Standard
configuration. The Large configuration supports page numbers from 0 to 8.

PLAY

string

Plays musical notes through the TV speaker as instructed by the contents of the

string

 argument.
Commands within the string may include:

NOTES AND PAUSES:

A..G

Note letters A through G with an optional # (sharp) or - (flat) suffix.

1..12

Note numbers 1 through 12 (use a prefix of ’N’ or a suffix of ’;’).
P

n

A Pause of 1/

n

 note length.

SETTINGS:

O

n

Select Octave

n

 (1-5)

L

n

.

Set note Length to 1/

n

 of normal length plus 1/8 times number of dots (L4

.

 = 1/4 + 1/8)

T

n

Set Tempo to

n

 (1-255). Normal tempo is 2.

OPERATORS:

(may be used instead of absolute value

n

 in the above settings)

+

Add 1 to the current value.

-

Subtract 1 from the current value.

>

Double the current value.

<

Halve the current value.

=

v

;

Use value from variable

v

.

SUB-STRINGS:

X

s$

;

Execute commands in string variable

s$

Page 14

PMODE

mode

,

page

The PMODE statement sets the current graphics mode and/or the current page on which graphics
operations take place. Either argument may be omitted if only one setting needs to be changed.
When

mode

 is provided, the current foreground and background colors are also reset to the
system defaults for that mode.

The

page

 argument selects which page of graphics memory will be used for subsequent graphic
operations. After a new page is selected, it will not be displayed until a SCREEN statement is
executed (see page 15). You can draw into a graphics page without displaying it on the screen.

NOTES

:

The mode and page are both set to 1 at system startup.

A timing problem in the MC-10 can cause modes 0 and 2 to produce a very noisy display.
This depends on whether the VDG syncs with the rising or falling edge of the clock.

PRESET (

x

,

y

)

Reset the pixel identified by

x

 and

y

 in the current graphics page to the background color.

PRINT #

fileNumber

,

expresssion1

,

expression2

, ...

Writes the value of each expression to the designated data file. Each expression, whether string
or numeric, is written to the file as a separate line of ASCII text terminated by a carriage return.
The choice of delimiter used to separate the expressions (comma, semicolon or none) has no
effect when PRINTing to a data file.

The file identified by

fileNumber

 must have previously been opened in Output or Append mode
using the OPEN statement (see page 12).

NOTE:

MCX Basic also accepts PRINT #-2 as an alternate for LPRINT.

PRINT OFF
PRINT ON

Turns virtual printing On or Off. When virtual printing is On, any output directed to the printer
is provided to the server instead. Virtual printing is enabled by default. Enter

 PRINT OFF

if
you want to use a printer connected directly to the MC-10 serial port.

Graphics Modes Supported in MCX Basic

MODE RESOLUTION COLORS

DEFAULT
FOREGROUND

DEFAULT
BACKGROUND

0 128 x 96 2 Green / Buff Black

1 128 x 96 4 Red / Orange Green / Buff

2 128 x 192 2 Green / Buff Black

Page 15

PSET (

x

,

y

,

color

)

Set the pixel identified by

x

 and

y

 in the current graphics page to the specified

color

. If

color

 is
omitted then the current foreground color is used.

SAVE*

array

, "

filename

"

Save the contents of the numeric

array

 to a file on the server.

SAVE SCREEN "

filename

",

page

Saves a file containing the specified graphics

page

 to the server. A

page

 argument of 0 will save
the current display screen. Page numbers from 0 to 5 may used when running MCX Basic in the
Standard configuration. The Large configuration supports page numbers from 0 to 8.

SCREEN

type

,

colorSet

The SCREEN statement updates the screen to show the specified display

type

 and/or the new

color set

. Either argument may be omitted if only one setting needs to change.

When

type

 is 0, the Text / Semigraphics screen is displayed. When

type

 is 1, the Graphics screen
is displayed. The Graphics screen is a combination of the mode and page most recently selected
through a PMODE statement.

Each of the display types can be viewed using one of two color sets. You can change the active
color set by providing either 0 or 1 for the

colorSet

 argument. The new color set is only applied
to the specified (or current) display type.

NOTES

:

PRINT

 and

INPUT

 statements automatically switch the display
type to Text, as does stopping or ending the program.

The contents of the Text screen are lost when the display switches to
a Graphics screen. For this reason, a

CLS

 is automatically performed
when the display switches from Graphics to Text.

Color Sets

SET TEXT PMODE 0 or 2 PMODE 1

0 Black / Green Black / Green Green / Yellow / Blue / Red

1 Black / Amber Black / Buff Buff / Cyan / Magenta / Orange

Page 16

SWAP

var1

,

var2

Exchanges the values of two variables. The variables must be of the same type (string or
numeric). Individual elements within arrays may also be swapped.

Examples:

 SWAP J,K
 SWAP A$,B$
 SWAP D$(N),D$(N+1)

TIMER =

number

Sets the computer’s TIMER value to

number

, which may be any integer from 0 to 65535. See
the description of the TIMER function on page 19 for more information.

WAIT

milliseconds

Causes the computer to pause for the specified number of milliseconds (0-65535).

NOTE

:

The wait time is approximate.

FUNCTIONS

ATN (

angle

)

Computes the arctangent of

angle

, which is given in radians. This is the inverse of the TAN
function.

EOF (

fileNumber

)

Returns -1 if the End-Of-File has been reached. Returns 0 if more data is available. The

fileNumber

 argument must refer to a data file that has been opened for Input.

ERRL

Returns the program line number in which the last error occurred. If no error has occurred since
the program started running or since the last CLEAR ERROR statement was executed then
65535 will be returned.

NOTE

:

An error produced in Direct Mode will also reset the value to 65535.

Page 17

ERRN

Returns a number representing the type of error which last occurred. See ÒERROR CODESÓ on
page 19 for a list of possible error numbers.

If no error has occurred since the program started running or since the last

CLEAR ERROR

statement was executed then -1 will be returned.

FIX (

number

)

The

FIX

 function is similar to

INT

 in that they both return the integer portion of a

number

.

FIX

differs from

INT

 when the argument is negative. In that case,

FIX

 returns the first integer that is
greater than or equal to the argument whereas

INT

 returns the first integer that is less than or
equal to the argument. In other words,

FIX

 simply chops off any digits to the right of the
decimal point and never changes any digits on the left.

HEX$ (

number

)

The HEX$ function returns a string representing the hexadecimal value of

number

. The
argument must be within the range of 0..65535.

INSTR (

position

,

subject

,

target

,

instance

)

The

INSTR

 function searches the

subject

 string for an instance of the

target

 string. The value
returned is either the position where the instance was found or 0.

The

position

 argument is optional and specifies the first character position within the

subject

string where searching will begin. If

position

 is omitted then searching begins from the first
character in the

subject

 string. If

position

 is greater than the number of characters in

subject

 then
the function returns 0.

The

instance

 argument is also optional and allows you to search for a specific instance of

target

in situations where

target

 may occur more than once within the

subject

 string. If

instance

 is
omitted then INSTR will search for the first instance of

target

. You can search for the last
(right-most) instance of

target

 by supplying an

instance

 value of 0.

MAXVAL (

num1

,

num2

)

The MAXVAL function compares the two numeric arguments and returns the larger value.

MEMEND

The MEMEND function returns the highest memory address that is currently being used by the
MCX Basic workspace.

You can use the CLEAR statement to take memory away from Basic’s workspace and use it for
some other purpose such as machine language routines.

Page 18

MINVAL (

num1

,

num2

)

The MINVAL function compares the two numeric arguments and returns the smaller value.

POS (

device

)

POS returns the current line position on the specified output device. MCX Basic supports two
output devices, the screen and a printer.

The device number for the screen is 0. Passing 0 as the argument to the POS function returns the
current cursor position within a line on the screen (0 - 31).

The device number for a printer is -2. Passing -2 as the argument to the POS function returns the
current column position of the printer’s carriage.

PPOINT (

x, y

)

PPOINT returns the color value for the pixel identified by

x

 and

y

 in the current graphics page.
The value returned will depend on the current graphics mode (set with PMODE) and the active
color set (set with SCREEN).

STRING$ (

length

,

character

)

The STRING$ function produces a string value from a repeated character. The

length

 argument
specifies how many times to repeat the character in order to produce the result. The

character

argument may be a number representing the ASCII code of the character or it can be a string
from which the first character will be used.

Examples:

 A$ = STRING$(32,"-")

Assigns a string of 32 dashes to A$.

 PRINT STRING$(4,13)

Prints 4 carriage returns to the screen.

STRMEM (

compact

)

The STRMEM function returns the amount of string space currently available. The

compact

argument indicates whether or not compaction should take place before calculating the result.

Passing 0 for

compact

 bypasses compaction and returns the number of characters that can be
allocated before an automatic compaction is triggered.

Passing 1 for

compact

 forces an immediate compaction of string space. In this case, the value
returned represents the true amount of unused string space.

Page 19

TIMER

MCX Basic provides a built-in timer. The timer is set to zero when the computer is turned on and
then begins incrementing once every sixtieth of a second (approximately). When the timer value
reaches 65535, it starts over from 0.

NOTE

:

The timer pauses during some operations including File I/O,
Printing, RENUM and MERGE

.

ERROR CODES

Abbreviation # Description
--

NF 0 NEXT without FOR
SN 2 Syntax error
RG 4 RETURN without GOSUB
OD 6 Out of DATA
FC 8 Illegal Function Call
OV 10 Overflow
OM 12 Out of Memory
UL 14 Undefined Line number
BS 16 Bad Subscript
DD 18 Doubly Dimensioned array
D0 20 Division by Zero
ID 22 Illegal in Direct mode
TM 24 Type Mismatch
OS 26 Out of String space
LS 28 Length of String (too long)
ST 30 String formula is Too complex
CN 32 Can’t continue
IO 34 Input/Output error
FM 36 Wrong File Mode
DN 38 Bad Device Number (or un-allocated file number)
NE 40 File does Not Exist
WP 42 Write Protected
FN 44 Badly formed File (or directory) Name
FS 46 File System error
IE 48 Input past End of file
FD 50 Unacceptable File Data
AO 52 File is Already Open
NO 54 File is Not Open
DS 56 Direct Statement in file

	OVERVIEW
	INSTALLATION and STARTUP
	STANDARD vs. LARGE
	DETECTING MCX BASIC
	BASIC'S SYSTEM VARIABLES
	GRAPHICS MODES
	KEYBOARD SHORTCUTS
	MAXIMUM LINE LENGTH
	HEX and OCTAL CONSTANTS
	COMPUTED LINE NUMBERS
	RESTORE TO LINE
	INKEY$ CORRECTION
	VARPTR CORRECTION
	COMMANDS
	AUTO
	CSAVEM
	DEL
	DIR
	DIRLIST
	EDIT
	LOAD
	LOADM
	MERGE
	RUN
	RUNM
	SETDIR
	RENUM
	SAVE
	SAVEM
	TROFF
	TRON

	STATEMENTS
	REM alternate
	CHAIN
	CIRCLE
	CLEAR ERROR
	CLOSE
	COLOR
	DEFUSR
	DRAW
	ELSE
	ERROR
	FILES
	INPUT#
	LINE
	LINE INPUT
	LOAD*
	LOAD SCREEN
	MID$ =
	OPEN
	ON BREAK
	ON ERROR
	PAINT
	PCLS
	PCOPY
	PLAY
	PMODE
	PRESET
	PRINT#
	PRINT ON / OFF
	PSET
	SAVE*
	SAVE SCREEN
	SCREEN
	SWAP
	TIMER =
	WAIT

	FUNCTIONS
	ATN
	EOF
	ERRL
	ERRN
	FIX
	HEX$
	INSTR
	MAXVAL
	MEMEND
	MINVAL
	POS
	PPOINT
	STRING$
	STRMEM
	TIMER

	ERROR CODES

